49 research outputs found

    Gender and line size factors modulate the deviations of the subjective visual vertical induced by head tilt

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The subjective visual vertical (SVV, the visual estimation of gravitational direction) is commonly considered as an indicator of the sense of orientation. The present study examined the impact of two methodological factors (the angle size of the stimulus and the participant's gender) on deviations of the SVV caused by head tilt. Forty healthy participants (20 men and 20 women) were asked to make visual vertical adjustments of a light bar with their head held vertically or roll-tilted by 30° to the left or to the right. Line angle sizes of 0.95° and 18.92° were presented.</p> <p>Results</p> <p>The SVV tended to move in the direction of head tilt in women but away from the direction of head tilt in men. Moreover, the head-tilt effect was also modulated by the stimulus' angle size. The large angle size led to deviations in the direction of head-tilt, whereas the small angle size had the opposite effect.</p> <p>Conclusions</p> <p>Our results showed that gender and line angle size have an impact on the evaluation of the SVV. These findings must be taken into account in the growing body of research that uses the SVV paradigm in disease settings. Moreover, this methodological issue may explain (at least in part) the discrepancies found in the literature on the head-tilt effect.</p

    The haptic perception of spatial orientations

    Get PDF
    This review examines the isotropy of the perception of spatial orientations in the haptic system. It shows the existence of an oblique effect (i.e., a better perception of vertical and horizontal orientations than oblique orientations) in a spatial plane intrinsic to the haptic system, determined by the gravitational cues and the cognitive resources and defined in a subjective frame of reference. Similar results are observed from infancy to adulthood. In 3D space, the haptic processing of orientations is also anisotropic and seems to use both egocentric and allocentric cues. Taken together, these results revealed that the haptic oblique effect occurs when the sensory motor traces associated with exploratory movement are represented more abstractly at a cognitive level

    Visual Performance Fields: Frames of Reference

    Get PDF
    Performance in most visual discrimination tasks is better along the horizontal than the vertical meridian (Horizontal-Vertical Anisotropy, HVA), and along the lower than the upper vertical meridian (Vertical Meridian Asymmetry, VMA), with intermediate performance at intercardinal locations. As these inhomogeneities are prevalent throughout visual tasks, it is important to understand the perceptual consequences of dissociating spatial reference frames. In all studies of performance fields so far, allocentric environmental references and egocentric observer reference frames were aligned. Here we quantified the effects of manipulating head-centric and retinotopic coordinates on the shape of visual performance fields. When observers viewed briefly presented radial arrays of Gabors and discriminated the tilt of a target relative to homogeneously oriented distractors, performance fields shifted with head tilt (Experiment 1), and fixation (Experiment 2). These results show that performance fields shift in-line with egocentric referents, corresponding to the retinal location of the stimulus

    Elevated visual dependency in young adults after chemotherapy in childhood

    Get PDF
    Chemotherapy in childhood can result in long-term neurophysiological side-effects, which could extend to visual processing, specifically the degree to which a person relies on vision to determine vertical and horizontal (visual dependency). We investigated whether adults treated with chemotherapy in childhood experience elevated visual dependency compared to controls and whether any difference is associated with the age at which subjects were treated. Visual dependency was measured in 23 subjects (mean age 25.3 years) treated in childhood with chemotherapy (CTS) for malignant, solid, non-CNS tumors. We also stratified CTS into two groups: those treated before 12 years of age and those treated from 12 years of age and older. Results were compared to 25 healthy, age-matched controls. The subjective visual horizontal (SVH) and vertical (SVV) orientations was recorded by having subjects position an illuminated rod to their perceived horizontal and vertical with and without a surrounding frame tilted clockwise and counter-clockwise 20° from vertical. There was no significant difference in rod accuracy between any CTS groups and controls without a frame. However, when assessing visual dependency using a frame, CTS in general (p = 0.006) and especially CTS treated before 12 years of age (p = 0.001) tilted the rod significantly further in the direction of the frame compared to controls. Our findings suggest that chemotherapy treatment before 12 years of age is associated with elevated visual dependency compared to controls, implying a visual bias during spatial activities. Clinicians should be aware of symptoms such as visual vertigo in adults treated with chemotherapy in childhood

    Does the Integration of Haptic and Visual Cues Reduce the Effect of a Biased Visual Reference Frame on the Subjective Head Orientation?

    Get PDF
    The selection of appropriate frames of reference (FOR) is a key factor in the elaboration of spatial perception and the production of robust interaction with our environment. The extent to which we perceive the head axis orientation (subjective head orientation, SHO) with both accuracy and precision likely contributes to the efficiency of these spatial interactions. A first goal of this study was to investigate the relative contribution of both the visual and egocentric FOR (centre-of-mass) in the SHO processing. A second goal was to investigate humans' ability to process SHO in various sensory response modalities (visual, haptic and visuo-haptic), and the way they modify the reliance to either the visual or egocentric FORs. A third goal was to question whether subjects combined visual and haptic cues optimally to increase SHO certainty and to decrease the FORs disruption effect.Thirteen subjects were asked to indicate their SHO while the visual and/or egocentric FORs were deviated. Four results emerged from our study. First, visual rod settings to SHO were altered by the tilted visual frame but not by the egocentric FOR alteration, whereas no haptic settings alteration was observed whether due to the egocentric FOR alteration or the tilted visual frame. These results are modulated by individual analysis. Second, visual and egocentric FOR dependency appear to be negatively correlated. Third, the response modality enrichment appears to improve SHO. Fourth, several combination rules of the visuo-haptic cues such as the Maximum Likelihood Estimation (MLE), Winner-Take-All (WTA) or Unweighted Mean (UWM) rule seem to account for SHO improvements. However, the UWM rule seems to best account for the improvement of visuo-haptic estimates, especially in situations with high FOR incongruence. Finally, the data also indicated that FOR reliance resulted from the application of UWM rule. This was observed more particularly, in the visual dependent subject. Conclusions: Taken together, these findings emphasize the importance of identifying individual spatial FOR preferences to assess the efficiency of our interaction with the environment whilst performing spatial tasks

    The role of neck afferents in subjective orientation in the visual and tactile sensory modalities.

    No full text
    International audienceWe studied the influence of neck afferents on the perception of orientation. In Experiment 1, we investigated the effect of head tilt on the subjective vertical in both the visual and tactile modalities. The results showed that head tilt triggers an Aubert effect in the visual modality and a M?r effect in the tactile modality. Significant positive correlations between the two adjustment modalities were restricted to head tilt to the left. In Experiment 2, we investigated the role of neck afferents on tactile orientation in seated and supine positions. The results showed that, in the supine position, the tactile E-effect was twice as large as in the seated position. These experiments confirm that tactile perception of orientation is affected by neck afferents, and show that the influence of neck afferents is limited by relevant gravitational cues

    Reference frames and haptic perception of orientation: body and head tilt effects on the oblique effect.

    No full text
    International audienceThe aim of this study was to examine the effect of body and head tilts on the haptic oblique effect. This effect reflects the more accurate processing of vertical and horizontal orientations, relative to oblique orientations. Body or head tilts lead to a mismatch between egocentric and gravitational axes and indicate whether the haptic oblique effect is defined in an egocentric or a gravitational reference frame. The ability to reproduce principal (vertical and horizontal) and oblique orientations was studied in upright and tilted postures. Moreover, by controlling the deviation of the haptic subjective vertical provoked by postural tilt, the possible role of a subjective gravitational reference frame was tested. Results showed that the haptic reproduction of orientations was strongly affected by both the position of the body (Experiment 1) and the position of the head (Experiment 2). In particular, the classical haptic oblique effect observed in the upright posture disappeared in tilted conditions, mainly because of a decrease in the accuracy of the vertical and horizontal settings. The subjective vertical appeared to be the orientation reproduced the most accurately. These results suggest that the haptic oblique effect is not purely gravitationally or egocentrically defined but, rather, depends on a subjective gravitational reference frame that is tilted in a direction opposite to that of the head in tilted postures (Experiment 3)

    Reference frames and haptic perception of orientation: body and head tilt effects on the oblique effect.

    No full text
    International audienceThe aim of this study was to examine the effect of body and head tilts on the haptic oblique effect. This effect reflects the more accurate processing of vertical and horizontal orientations, relative to oblique orientations. Body or head tilts lead to a mismatch between egocentric and gravitational axes and indicate whether the haptic oblique effect is defined in an egocentric or a gravitational reference frame. The ability to reproduce principal (vertical and horizontal) and oblique orientations was studied in upright and tilted postures. Moreover, by controlling the deviation of the haptic subjective vertical provoked by postural tilt, the possible role of a subjective gravitational reference frame was tested. Results showed that the haptic reproduction of orientations was strongly affected by both the position of the body (Experiment 1) and the position of the head (Experiment 2). In particular, the classical haptic oblique effect observed in the upright posture disappeared in tilted conditions, mainly because of a decrease in the accuracy of the vertical and horizontal settings. The subjective vertical appeared to be the orientation reproduced the most accurately. These results suggest that the haptic oblique effect is not purely gravitationally or egocentrically defined but, rather, depends on a subjective gravitational reference frame that is tilted in a direction opposite to that of the head in tilted postures (Experiment 3)
    corecore